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1. Introduction

During the last decade interest in data assimilation for the atmosphere
and oceans has increased. This interest can be attributed to the increase in
the number and accurancy of data available. In meteorology many methods have
been used for data assimilation; variational, statistical, and empirical
(Bengtsson et al., 1981; Ghil, 1988). A particularly promising method, widely
used in engineering, has been applied to numerical weather prediction by
Ghil et al. (1981). This method, Kalman (1960), provides the best procedure
for sequentially assimilating data into a dynamic model, under a set of rea-

sonable assumptions (Jazwinski, 1970; Gelb 1974; Ghil, 1988).

In the study of Ghil et al. (1981), further refined by Cohn (1982),
the model atmosphere was governed by a one-dimensional set of shallow-water
equations. This model includes some interesting features of the large-scale
atmospheric and oceanic system, in particular the two time-scale behavior of
slow Rossby waves and fast Poincare waves (Pedlosky, 1987; Ghil and Childress,
1987) . In order for the sequential filter to provide an estimate of the slowly-
evolving state of the system, the gain matrix was multiplied by a projection
matrix onto the slow-wave subspace, giving rise to a modification of the stand-
ard Kalman filter. This modification is fairly general and does not depend on
the model atmosphere being considered, but it might be too complicated to be
applied to an operational numerical weather prediction model. A comparison
between the operational procedures of optimal interpolation (0OI) and the mo-
dified Kalman filter was made. Cohn (1982) showed the advantages of the latter
and suggested how to improve the OI procedure so as to perform almost as well

as the modified Kalman filter. A summary of this improved OI is given in Cohn




er al. (1981).

A more realistic model was studied by Parrish and Cohn (1985). They
ccnsidered a two-dimensional (2-D), single layer shallow-water model on an
f-plane and showed that the Kalman filter can be implemented in two dimensions.
The results for the forecast error correlations are markedly different from

those obtained by 0I, leading to a very different weighting of observations.

Parrish and Cohn (1985) used an ingenuous idea to make the implementation
of the filter feasible for a system of flow equations. In what follows, we use
their algorithm for an even more realistic model, i. e., we consider a two-

layer, 2-D shallow-water model on a beta plane.

Two-layer shallow-water models have been widely used for different
purposes. Takacs (1986), considered such a model on the sphere in order to
compare its results with those of the Goddard Laboratory for Atmospheres (GLA)
fourth order General Circulation Model, and better understand the latter.
Sinton and Mechoso (1984), studied the nonlinear evolution of frontal waves

with a similar model.

The main feature of this model which interests us is its ability to exhibit
baroclinic instability. This property was studied by Pedlosky (1963), who gave
instability conditions. The performance of the Kalman filter in the presence
of numerical instability in the barotropic vorticity equation was studied by
Miller (1986). The main question to be answered here is weather the filter al-
lcws sufficiently accurate tracking of the atmospheric state in the presence

of rapid baroclinic developments.
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2. Model Description

The atmosphere is treated as a system with two shallow layers of inviscid,
constant-density immiscible fluids. In the 2-D case the equations for such a

system are,

_a?k-_(Vk.V)Vk-fika-v[ak¢l+¢z] (2_13)
ot
_393=-V'(¢.‘V.‘) (2.1b)
ot

for k=1,2, the upper and lower layers, respectively: Vk is the velocity
vector, ¢, is the geopotential, £ is the Coriolis parameter and the Q's are

constants, @ =1, o,= p, /pz, where p is density.
These equations can now be linearized about a basic state in which
there is no wind in the y-direction, i. e., Vv,= 0, and the wind in the

x-direction is given by u,= U (y), for each layer. On a beta plane at

45°N, the 2-D equations (2.1) are given explicitly by,
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where X and Y point eastward and northward, respectively, while U, v, and ¢,

are the perturbation fields.

In order to write system (2.2) in a vector-matrix form one can introduce

. 3 T
the notation w2 ( u,, Vv,, ¢, U;, V,, ¢, ) and then,

W + (AW + 9(BW +CWw =0 (2. 3a)

ot ox oy

where A, B and C are given by

Uu 0 a 0 0 1
0o u o o0 o0 o
A = ¢1 0 U1 0 0 0 ’ (2.3b)
0 0 o U 0 1
o 06 0 0 Uy o
0 0 0 ¢ 0 Uy
o 0 o O 0 o
0 0 o O . 0o o
B = 6 & o 0 0 o0 p (2.3c)
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and




0 -(f-Uy) 0 0 0 0
f 0 0 o0 0 0
C = 0 0 0 o 0 0
0 0 0 0 -(f-Uy) 0 (2.3d)
0 0 0 f 0 0
0 0 0 o 0 0

To solve system (2.3) we use the Richtmyer two-step version of the Lax-
wWendroff scheme (see Richtmyer and Morton, 1967; Ghil et al., 1981). The first
step to the finite-difference expression for 0:j = i’![( i-1)ax, (j-1)Ay, kat )

(see Appendix C in Parrish and Cohn, 1985) at an intermediate location,

Ket/ 2 k k
O v1r2, 54102 = Uy O 40 54172 - % Livi/2 9,072,512 ¢+ (2.9

for i=1,2,...,l and j=1,2,...,J-1, where
Ax = X1 |, Ay = Y/(J-1), (2.5a,b)

with X and Y being the east-west and north-south extents, respectively.

The averaging operators M, and W, are given by

mne '._;__("inlz.j +9 _42.5) (2.6a)

WMo, j = 1 0 ;.12 +9 j.4,2) . (2.6b)
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The differencing operators 8§, and 8, are defined by

8,0, | =W 42, “ W2, v (2.7a)

S, ¢ | O jsi2 ~Y .12 - (2.7b)

and the operator Li is defined as

Li =A,nd, A + A, 5,8 + at G . (2.8)

with A,= At /Ax and A = At/Ay.

The second step uses the intermediate values to compute the state variables
at the next time level

X+1 k K

] A "' - L‘ ”' ) I ’ ‘2. 9)
for i=1,2,...,! and j=2,3,...,J-1. Based on (2.9) it is possible to construct
the dynamics matrix ¥, which is needed in the Kalman filter scheme. The bound-
ary conditions can be included in the formulation of ¥. It is important to

notice that, in order to obtain baroclinic instability the free upper surface

and the interface between the two layers of fluid must have nonzero mean slopes.

3. The Kalman Filter

Very good and clear presentations of the Kalman filtering procedure can be




found in many places: Jazwinski (1970), gives a good mathematical description
while Gelb (1974) or Brown (1983), are more application-oriented. The Kalman
filter as applied to numerical weather prediction is presented by Ghil et al.

(1981). In this section we recapitulate briefly the essentials.

Let us consider a discrete linear system, given in vector notation by

9t (k) = W(k-1)@t (k-1) + Bt (k-1) (3.1)

for the discrete times k = 1,2,..., where Wt(k) is the n-vector repre-
senting the true state of the system, W is the nxn dynamics matrix and
B’ (k) is a random n-vector which is white in time and unbiased with co-

variance Q{k):

g[ Bt(x)] =0, E[ Bt(k) BEANT] = 5,,0Q(k). (3.2a,b)

LY

The symbol E denotes the expectation, the superscript T denotes the

transpose and 8,, is the Kronecker delta.
Discrete linear observations are described by
WO(k) = H(K)Wt(k) + BO(k) , k =1,2,... (3.3)
where W°(k) is a p-vector of observations, and H(k) is a pxn matrix account-
ing for interpolations and for any conversion between observed variables

. 2 : . . .
and state variables; b°(k) is a random p-vector, unbaised with covariance

matrix R(k), describing observation error, and assumed to be uncorrelated with
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the model error BE (k) :

g[ Bot] =0, E[ Box) BT =5, ,R(k) , (3.4a,b)

E[ Bo(x) BtaNT] =0 . (3.4c)

The Kalman filter for the system described above is the following set of

equations:
Wt (k) = Wk-1)"2(x-1) , (3.5a)
pE(x) = W(k-1)P2 (k-1)¥F (k-1) + Q(k-1) , (3.5b)
k(k) = PEgaRT ([ BHuPE()HT(X) + R(K)]71, (3.5¢)
P2(x) = [ I - K(HK)] PE(x) , (3.5d)
k) = ¥k + k| K - 1HIWE(K)] , (3.5e)
for k = 1,2,3,... . The superscripts "f" and "a"™ stand for forecast

and analyzed quantities, that is, quantities that are due simply to
the evolution of the physical system itself and those dependent on the
observations, repectively. K introduced above is the Kalman gain matrix,
which refers to the weight with which observations and forecast are combined

to give the final result, and P is the error covariance matrix,

pfra(x) = E[ [9f a(x)-dt(x)][wEra (k) -Wt (X)) T ] . (3.6)

for the forecast and analyzed fields, repectively.
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